3,491 research outputs found

    Fast cubature of high dimensional biharmonic potential based on Approximate Approximations

    Full text link
    We derive new formulas for the high dimensional biharmonic potential acting on Gaussians or Gaussians times special polynomials. These formulas can be used to construct accurate cubature formulas of an arbitrary high order which are fast and effective also in very high dimensions. Numerical tests show that the formulas are accurate and provide the predicted approximation rate (O(h^8)) up to the dimension 10^7

    Fast cubature of volume potentials over rectangular domains

    Get PDF
    In the present paper we study high-order cubature formulas for the computation of advection-diffusion potentials over boxes. By using the basis functions introduced in the theory of approximate approximations, the cubature of a potential is reduced to the quadrature of one dimensional integrals. For densities with separated approximation, we derive a tensor product representation of the integral operator which admits efficient cubature procedures in very high dimensions. Numerical tests show that these formulas are accurate and provide approximation of order O(h6)O(h^6) up to dimension 10810^8.Comment: 17 page

    Tensor product approximations of high dimensional potentials

    Get PDF
    The paper is devoted to the efficient computation of high-order cubature formulas for volume potentials obtained within the framework of approximate approximations. We combine this approach with modern methods of structured tensor product approximations. Instead of performing high-dimensional discrete convolutions the cubature of the potentials can be reduced to a certain number of one-dimensional convolutions leading to a considerable reduction of computing resources. We propose one-dimensional integral representions of high-order cubature formulas for n-dimensional harmonic and Yukawa potentials, which allow low rank tensor product approximations.Comment: 20 page

    Accurate computation of the high dimensional diffraction potential over hyper-rectangles

    Full text link
    We propose a fast method for high order approximation of potentials of the Helmholtz type operator Delta+kappa^2 over hyper-rectangles in R^n. By using the basis functions introduced in the theory of approximate approximations, the cubature of a potential is reduced to the quadrature of one-dimensional integrals with separable integrands. Then a separated representation of the density, combined with a suitable quadrature rule, leads to a tensor product representation of the integral operator. Numerical tests show that these formulas are accurate and provide approximations of order 6 up to dimension 100 and kappa^2=100

    Integral methods for conical diffraction

    Get PDF
    The paper is devoted to the scattering of a plane wave obliquely illuminating a periodic surface. Integral equation methods lead to a system of singular integral equations over the profile. Using boundary integral techniques we study the equivalence of these equations to the electromagnetic formulation, the existence and uniqueness of solutions under general assumptions on the permittivity and permeability of the materials. In particular, new results for materials with negative permittivity or permeability are established

    Conical diffraction by multilayer gratings: A recursive integral equations approach

    Get PDF
    In this paper we consider an integral equation algorithm to study the scattering of plane waves by multilayer diffraction gratings under oblique incidence. The scattering problem is described by a system of Helmholtz equations with piecewise constant coefficients in R2\R^2 coupled by special transmission conditions at the interfaces between different layers. Boundary integral methods lead to a system of singular integral equations, containing at least two equations for each interface. To deal with an arbitrary number of material layers we present the extension of a recursive procedure developed by Maystre for normal incidence, which transforms the problem to a sequence of equations with 2×22 \times 2 operator matrices on each interface. Necessary and sufficient conditions for the applicability of the algorithm are derived

    On the diffraction by biperiodic anisotropic structures

    Get PDF
    This paper studies the scattering of electromagnetic waves by a nonmagnetic biperiodic structure. The structure consists of anisotropic optical materials and separates two regions with constant dielectric coefficients. The time harmonic Maxwell equations are transformed to an equivalent strongly elliptic variational problem for the magnetic field in a bounded biperiodic cell with nonlocal boundary conditions. This guarantees the existence of quasiperiodic magnetic fields in 퐻1 and electric fields in 퐻(curl) solving Maxwell's equations. The uniqueness is proved for all frequencies excluding possibly a discrete set. The analytic dependence of these solutions on frequency and incident angles is studied

    Approximate Approximations and their Applications

    Get PDF
    This paper gives a survey of an approximation method which was proposed by V. Maz'ya as underlying procedure for numerical algorithms to solve initial and boundary value problems of mathematical physics. Due to a greater flexibility in the choice of approximating functions it allows efficient approximations of multi-dimensional integral operators often occuring in applied problems. Its application especially in connection with integral equation methods is very promising, which has been proved already for different classes of evolution equations. The survey describes some basic results concerning error estimates for quasi-interpolation and cubature of integral operators with singular kernels as well as a multiscale and wavelet approach to approximate those operators over bounded domains. Finally a general numerical method for solving nonlocal nonlinear evolution equations is presented
    • 

    corecore